تبلیغات
گفتنی های علمی - مطالب جزوات ریاضی سال سوم راهنمایی
 
 
جذر
 
 
تاریخ :  جمعه 30 اردیبهشت 1390
نویسنده :  سید ایمان امینی

اینجانب به دلیل این که شما بازدید کنندگان عزیز در بخش نظر سنجی به مبحث *جذر* رای داده اید ،در مورد این مبحث مطلبی می نویسم.

.:: جذر ::.

 

جذر (root):

جذر به معنی ریشه ، بن و پایه است. در ریاضیات جذر گرفتن عکس عمل به توان رساندن می باشد.

عددهایی مانند 49 , 16 , 4 , ... را که جذر دقیق دارند ، مجذور یا مربع کامل می نامند.



ادامه مطلب
:: مرتبط با: جزوات ریاضی سال سوم راهنمایی , جزوات ریاضی سال دوم راهنمایی ,
تاریخ :  شنبه 17 اردیبهشت 1390
نویسنده :  سید ایمان امینی

.:: زاویه و دایره ::.

 

دایره: (circle)

 

مجموعه نقاطی از صفحه که فاصله ی آن از یک نقطه به نام مرکز برابر باشند ، دایره نامیده می شود.

دایره ی c به مرکز o و شعاع R را با نماد نشان می دهیم .

 

وتر دایره :(circle  chord) پاره خطی که دو نقطه از محیط دایره را به هم وصل می کند . هر دایره بیشمار وتر دارد . مانند وتر های AB و CD در دایره ی C

 

قطر دایره:(circle axis) بزرگترین وتر در هر دایره را قطر می نامند . قطر وتر ی از دایره است که از مرکز می گذرد مانند قطر MN در دایره ی C.

 

کمان دایره :(circle arc) قسمتی از محیط دایره را می گویند که به دو نقطه روی محیط دایره محدود شده باشد. اگر دو نقطه ی A و B را روی دایره C در نظر بگیریم دو کمان پدید می آید ، کمان کوچکتر را به صورت و کمان بزرگتر را به صورت می خوانیم .

 

í نقطه و دایره : نقطه و دایره نسبت به هم 3 وضعیت دارند :1 نقطه داخل دایره است. 2 نقطه روی دایره است. 3 نقطه خارج دایره است .

 

í وضع یک خط و یک دایره نسبت به هم:

خط و دایره نسبت به هم سه حالت دارند:

1. خط خارج دایره است که در این صورت فاصله ی خط تا مرکز دایره از شعاع بزرگتر است. یعنی  d<r

 

2.خط بر دایره مماس است.که در این صورت فاصله ی خط تا مرکز دایره با شعاع مساوی است . یعنی d = r

 

3.خط دایره را در دو نقطه قطع می کند که در این صورت فاصله ی خط تا مرکز دایره از شعاع کو چکتر است.

یعنی: d < r

í زاویه و دایره:

زاویه ی مرکزی:زاویه ای که رأس آن مرکز دایره باشد زاویه ی مرکزی نامیده می شود.

در شکل مقابل زاویه ی AOB یک زاویه مرکزی است و کمان AB کمان مقابل آن می باشد.

نکته: اندازه ی زاویه ی مرکزی با کمان مقابلش مساوی است.

زاویه ی محاطی: زاویه ی محاطی زاویه ای است که رأس آن روی دایره و اضلاع آن دو وتر از همان دایره باشند .

در شکل مقابل زاویه ی یک زاویه ی محاطی است و کمان BC ، کمان مقابل آن می باشد.

 

نکته :اندازه ی زاویه ی محاطی نصف کمان مقابل آن است.

زاویه ی ظلّی : هر زاویه ای که رأسش روی دایره و یک ضلع آن وتری از دایره و ضلع دیگرش بر دایره مماس باشد ، زاویه ی ظّلی نامیده می شود.

در شکل مقابل یک زاویه ی ظّلی و کمان AB کمان مقابل به زاویه ی ظّلی A می باشد.

نکته : اندازه ی زاویه ی ظّلی نصف کمان مقابل آن است.

í مثلث و دایره :

دایره ی محاطی مثلث :

3 نیمساز زوایای داخلی مثلث یکدیگر را در یک نقطه مانند o قطع می کنند.می دانیم فاصله ی نقطه ی o از 3 ضلع مثلث به یک فاصله است (با توجه به مبحث تساوی مثلث ها)؛ یعنی اگر عمودی ها ی OK ،OH و OE را بر اضلاع مثلث فرود آوریم ،داریم : OE=OH=OK

پس اگر دایره ای به مرکز O و شعاع OH رسم کنیم ، این دایره در K و H و E بر سه ضلع مثلث مماس خواهد بود .

این دایره ، دایره ی محاطی مثلث نام دارد . مرکز دایره ی محاطی مثلث نقطه ی تلاقی نیمساز های زوایای داخلی آن است.

 

محاسبه ی شعاع دایره ی محاطی مثلث:

شعاع دایره ی محاطی مثلث را با حرف r نشان می دهیم .

 

 

دایره ی محیطی مثلث:

سه عمود منصف اضلاع یک مثلث بر یک نقطه مانند O می گذرند. می دانیم فاصله ی O از سه رأس مثلث به یک فاصله است، یعنی OA=OB=OC . (با توجه به مبحث تساوی مثلث ها)

اگر به مرکز O و شعاع مثلأ OA دایره ای رسم کنیم این دایره بر دو رأس دیگر مثلث نیز عبور خواهد کرد . به این دایره ، دایره ی محیطی مثلث می گویند .

مرکز دایره ی محیطی مثلث نقطه ی تقاطع عمود منصف های اضلاع آن است.

 

محاسبه ی شعاع دایره ی محیطی مثلث:

شعاع دایره ی محیطی مثلث را با حرف R نشان می دهند . در شکل زیر به دو مثلث توجه کنید ؛ این دو مثلث با هم متشابهند .

تناسب اضلاع متناظر دو مثلث را می نویسیم:

 

لذا در هر مثلث حاصل ضرب دو ضلع برابر است با : قطر دایره ی محیطی در ارتفاع وارد بر ضلع سوم یعنی :

 

از طرفی می دانیم مساحت مثلث برابر است با : 

 

حالا با توجه به رابطه ی (1) و (2) می توان نوشت:

 

دایره و چند ضلعی های منتظم :

چند ضلعی منتظم: چند ضلعی که تمام اضلاع آن با هم و همه ی زاویه هایش نیز با هم مساوی باشند یک چند ضلعی منتظم نامیده می شود . مانند مربع که یک چهار ضلعی منتظم است.

 

رسم چند ضلعی منتظم:

برای رسم یک n ضلعی منتظم کافی است دایره ای را به n قسمت مساوی تقسیم کرده و نقاط تقسیم را به هم وصل کنیم .

تقسیم دایره به n قسمت مساوی به صورت زیر انجام می شود:

1. یک زاویه ی مرکزی به اندازه ی رسم کنیم .

2.وتر نظیر این زاویه مرکزی را می کشیم .

3. پرگار را به اندازه ی این وتر باز کرده و پشت سر هم کمان های متوالی می زنیم تا دایره به n قسمت مساوی تقسیم شود .

بازی و ریاضی :

ساخت چند ضلعی های منتظم با گره زدن کاغذ

 

پنج ضلعی منتظم:

نوار بلند کاغذی آماده کنید که عرض یکسان داشته باشد.

 

برای ساخت یک پنج ضلعی منتظم با این نوار به تر تیب زیر عمل کنید:

1. دو سر نوار را بگیرید و با آن یک گره ساده بزنید

مانند شکل زیر:

 

2. گره را به آرامی سفت کنید و رد های کاغذ را صاف کنید.

 

3. نوار های اضافی را ببرید ،پنج ضلعی منتظم بوجود می آید.

4. گره را باز کنید و ذوزنقه های تشکیل شده را با هم بررسی و مقایسه کنید.

 

هفت ضلعی منتظم:

نوار بلند کاغذی آماده کنید که عرض یکسان داشته باشد.

 

برای ساخت یک هفت ضلعی منتظم با این نوار به ترتیب زیر عمل کنید:

1. دو سر نوار را بگیرید و با آن یک گره ساده بزنید. (مانند پنج ضلعی منتظم)

 

2. گره را سفت نکنید و وسط گره (ناحیه ی 1) را در نظر داشته باشید.

3. مجددأ یک سر نوار را به قصد زدن گره دوم زیر سر دیگر برده ،و از ناحیه 1 (وسط گره اول) عبور دهید.

 

4. گره را به آرامی سفت کنید و رد های کاغذ را صاف کنید.

 

5. نوار های اضافی را ببرید ،هفت ضلعی منتظم بوجود می آید. 

 

 

 

 

1- در شکل مقابل زاویه ی از رابطه ی زیر بدست می آید . این زاویه از برخورد دو وتر دلخواه در داخل دایره بوجود آمده است.

 

2- در شکل مقابل زاویه ی از رابطه ی زیر بدست می آید . این زاویه از برخورد امتداد دو وتر دلخواه در خارج دایره بوجود آمده است.




:: مرتبط با: جزوات ریاضی سال سوم راهنمایی ,
معادله
 
 
تاریخ :  شنبه 17 اردیبهشت 1390
نویسنده :  سید ایمان امینی

.:: معادله ::.

معادله equation معادله به معنی برابر کردن ،مساوی کردن ، هم وزن کردن دو چیز و هم وزنی می باشد و در ریاضی تساوی دو عبارت جبری که به ازای مقادیر معین صحیح میباشد را معادله گویند . هر تساوی به صورت 13=5+a یا 20=4x را یک معادله می نامیم که اولی به ازای عدد 8 و دومی به ازای عدد 5 صحیح است .

مثال: چند موز لازم است تا کفه های ترازو هم وزن شوند.

حل: 6 موز

 

روش حل معادله

منظور از حل معادله پیدا کردن عددی است که اگر به جای مجهول قرار بدهیم ، تساوی بر قرار شود . برای مشخص کردن جوابهای معادله اول باید هر چه عبارت مجهول داریم ، ببریم یک طرف تساوی و هر چه عدد معلوم داریم ، ببریم طرف دیگر تساوی و ساده کنیم تا معادله حل شود . این هم خیلی مهم است که بدانید که اگر جمله ای از یک طرف تساوی به طرف دیگر تساوی منتقل شود ، علامتش عوض می شود.

مثال1:

حل :    

          


مثال2:

حل:     

           


مثال3: 

حل: می دانیم دو طرف یک تساوی را می توان در عددی غیر از صفر ضرب کرد طرفین تساوی را در مخرج مشترک کسرها ضرب می کنیم تا مخرج کسرها از بین برود سپس معادله ی بدست آمده را حل می کنیم .

 

       


مثال4:   

ابتدا دو طرف معادله را در مخرج مشترک کسرها ضرب می کنیم ، سپس معادله را حل می کنیم .

 

 


مثال5: 

حل: برای حل این معادله ابتدا آنرا به صورت می نویسیم و سپس از خاصیت طرفین وسطین کمک می گیریم.

           

       

 

 

 

1. به دو طرف معادله می توان مقادیری اضافه یا کم کرد.

2. دو طرف یک معادله را می توان در عددی غیر صفر ضرب کرد.

3. دو طرف یک معادله را می توان بر عددی غیر صفر تقسیم کرد.

4. در هر معادله می توان جمله های مساوی را از دو طرف معادله حذف کرد.

5. در هر معادله می توان جمله ای را با تغییر دادن علامت آن به طرف دیگر معادله انتقال داد.

6. هر گاه معادله ای به شکل کسری باشد ، برای از بین بردن مخرج کسرها ،دو طرف معادله را در کوچکترین مضرب مشترک مخرج ها ضرب می کنیم .

7. هر گاه معادله ای به شکل تواندار باشد (معادله ی توانی )، معمولأ باید با استفاده از تجزیه پایه های اعداد تواندار را در دو طرف معادله ، یکسان کنیم.

مثال:معادله ی توانی مقابل را حل کنید.            33x=۸۱

حل:

  

8. هر گاه معادله ای به شکل باشد ، آنگاه برای حل معادله می توان از خاصیت طرفین وسطین استفاده کرد و بنویسیم

A × D = B × C


مثال:معادله ی زیر را حل کنید.

              

حل:

      

9.هر گاه در معادله ای مقدار یک کسر مساوی صفر باشد ، آنگاه برای حل معادله صورت آن کسر را مساوی صفر می نویسیم .


مثال: معادله ی زیر را حل کنید.

 

حل:مخرج کسر یک عدد مثبت می باشد و برای اینکه حاصل این کسر برابر صفر شود کافی است صورت آن صفر باشد . یعنی:


10. به معادلاتی که در آن ها علاوه بریک مجهول ، متغییر دیگری هم باشد، معادلات پارامتری گفته می شود.

جواب این معادلات بستگی به مقدار پارامتر دارد.

مثال: معادله ی زیر را بر حسب مقدار m حل کنید .

2x - 4m = 3

حل:       

 

 

 


11. هر گاه معادله ای به صورت A + B = 0 باشد ،آنگاه حاصل جمع دو عبارت وقتی صفر است که یا هر دو عبارت صفر باشند یا قرینه ی یکدیگر شوند.

مثال: معادله ی مقابل را حل کنید.

 

حل:حاصل جمع دو عدد مثبت صفر شده است ، بنابراین هر کدام از آن ها صفر است.

       

 




:: مرتبط با: جزوات ریاضی سال سوم راهنمایی ,
جبر
 
 
تاریخ :  جمعه 16 اردیبهشت 1390
نویسنده :  سید ایمان امینی

.:: جبر ::.

 

جبر: (algebra)

در لغت جبر مقابل کلمه اختیار است و به معنی ناچار کردن می باشد. جبر و مقابله قسمتی از ریاضیات است که در آن برای حل مجهولات حروف و علامات را به جای اعداد به کار می برند.

 

عبارت جبری: (algebra expression)

عبارتی که شامل یک یا چند جمله جبری باشد مانند :

 

یک جمله ای جبری: (algebra monomial)

در حالت کلی یک جمله ای بر حسب x به صورت axn  نوشته می شود که در آن a ضریب عددی و x متغیر حرفی و n عدد صحیح نامنفی است . مانند:

 

پیدا کردن مقدار یک عبارت جبری:

 به عبارت جبری توجه کنید. اگر در این عبارت به جای a ، عدد 5 قرار دهیم، حاصل عبارت چقدر      می شود؟

حل: حاصل برابر 35 می شود، چون : 35= 5- (5) ×3+52

عدد 35 مقدار عددی عبارت جبری بازای 5=a می باشد.

 

ساده کردن یک عبارت جبری:

 دو تک جمله ای که قسمت حرفی آن ها عینا مثل هم باشد، متشابه نامیده می شوند. مثلا دو تک جمله 5xy و 2xy- متشابه اند. 7a۲ و a۲- نیز متشابه اند، ولی x۲ و xy متشابه نیستند. برای ساده کردن یک عبارت جبری، جمله های متشابه را با هم جمع یا تفریق می کنیم.

 

اشکال هندسی و عبارت جبری:

شکل های هندسی دارای ویژگی های زیادی هستند. مثلث را در نظر بگیرید دریایی از خصوصیت های زیبا می باشد ، ویژگی های نهفته در این شکل یکی پس از دیگری موج می زنند و به سمت ما حرکت می کنند.

دایره، چهار ضلعی ها، چند ضلعی های منتظم ، ... در این دریا غوطه ورند.

ویژگی های هر یک از شکل های هندسی را با عبارت جبری می توان بیان کرد به عنوان مثال مساحت هر یک از شکل های زیر را با یک عبارت جبری بیان می کنیم.

 

توزیع پذیری ضرب نسبت به جمع و تفریق

خاصیت توزیع پذیری یا پخشی یکی از خاصیت های ضرب است.

مردم برای خرید و فروش و محاسبه قیمت اجناس از این خاصیت زیبا فراوان استفاده می کنند.

به مثال های زیر دقت کنید:

 

این خاصیت برای جملات جبری نیز برقرار است. یعنی اگر  A و B و C چند جمله ای جبری باشند داریم:

A ×(B+C)= (A×B) + (A×C)F

به شکل های زیر توجه کنید. با توجه به اینکه هر دو شکل برابرند و در سمت راست مستطیل به دو قسمت تقسیم شده است، می توان نتیجه گرفت: مساحتهای این دو شکل با هم برابر است و تساوی زیر را نوشت.

این تساوی توزیع پذیری ضرب را نسبت به جمع (تفریق) نشان می دهد.

 

ضرب دو چند جمله ای: برای بدست آوردن حاصل این ضرب با توجه به خاصیت توزیع پذیری عمل ضرب نسبت به جمع و تفریق  می توان به صورت زیر عمل کرد:

 

با توجه به شکل می توان گفت: شکل (1) در سمت چپ و شکل (2) در سمت راست با هم برابر هستند و در شکل (2) مربع به چهار قسمت تقسیم شده است. می توان نتیجه گرفت مساحتهای این دو شکل برابر است و تساوی زیر را نوشت:

 

اتحاد ها: تساوی های جبری هستند که به ازای تمام مقادیر حقیقی درست می باشند. برای آسان شدن محاسبه از اتحاد ها کمک می گیرند. با کاربرد بیشتر اتحاد ها در دوره دبیرستان آشنا خواهید شد.

اتحاد اول:

اتحاد دوم:

اتحاد سوم: ( اتحاد مزدوج)

اتحاد چهارم: ( اتحاد جمله مشترک)

 

مثال:

 

تقسیم عبارتهای جبری:

برای تقسیم چند جمله ای بر یک حمله ای کافی است که تک تک جملات چند جمله ای را بر یک جمله ای تقسیم کنیم. برای محاسبه حاصل تقسیم ضرایب عدی بر هم تقسیم می شوند و قسمتهای حروفی نیز در صورت امکان با هم ساده خواهند شد.

مثال:

 

فاکتور گیری:

عبارت ab+ac را در نظر بگیرید. اگر این عبارت جبری را به صورت a(b+c)d  بنویسیم، به طوریکه a قسمت مشترک دو عبارت را تشکیل می دهد، اصطلاحا می گوییم از a فاکتور گرفته ایم. فاکتورگیری یکی از روشهای تبدیل یک عبارت جبری به صورت حاصل ضرب می باشد.

نکته: برای بدست آوردن قسمت غیر مشترک از تقسیم کمک بگیرید.

مثال: عبارت  3a۲ت+ 6ab را به صورت ضرب دو عبارت جبری بنویسید.

حل:

 

 

 

 

در این قسمت به روش زیر عمل می کنیم:

عبارتی جبری به شما نشان داده می شود. با دقت به عملیات انجام شده و تجزیه و تحلیل آن نظر خود را در مورد درستی یا نادرستی محاسبات بیان کنید. سپس روی قسمت «نتیجه» کلیک کنید تا جواب درست را مشاهده کنید. انشاء الله علاوه بر یادگیری نکات مربوط به این قسمت باعث گسترش مهارتهای شما نیز باشد.

í درستی یا نادرستی هر یک از نکته های بیان شده در یک کادر را ، با ذکر دلیل بیان کنید.

 

1-

نتیجه:  تساوی بالا درست است و توزیع پذیری عمل ضرب نسبت به جمع را نشان می دهد.

 


 

2-

نتیجه:  تساوی بالا درست است و توزیع پذیری عمل ضرب نسبت به تفریق را نشان می دهد.

 


 

3-

نتیجه:   تساوی بالا نادرست می باشد.

 


 

4-

نتیجه:  تساوی بالا نادرست می باشد.

 


 

5-

نتیجه:  این عبارت درست است؛ به یاد داشته باشید که توان از ضرب بوجود  می آید.

 


 

6-

نتیجه:  تساوی بالا درست است و نشان می دهد منفی پشت پرانتز تمام عبارتهای داخل پرانتز را قرینه می کند.

 


 

7-

نتیجه:  تساوی بالا نادرست می باشد.

 


 

8-

نتیجه:  تساوی بالا درست است و نشان می دهد منفی در پشت کسر تمام عبارتهای صورت کسر را قرینه می کند.

 


 

9-

نتیجه:  عبارت بالا درست است و نشان می دهد عمل ضرب نسبت به عمل جمع در محاسبات اولویت دارد.

 


 

10-

نتیجه:  این تساوی نادرست می باشد.

 


 

11-

نتیجه:  این تساوی درست است و اتحاد اول نام دارد.

 


 

12-

نتیجه:  این تساوی درست است و نشان می دهد که a-b و b-a  قرینه همدیگر هستند.

 


 

13-

نتیجه:  این عبارت نادرست می باشد.، چون اگر =x باشد، یک کسر مبهم و نامشخص است.

 


 

14-

نتیجه:  این عبارت درست است و می توان xها را ساده کرد. به طور کلی برای انجام عمل تقسیم مخرج کسر باید مخالف صفر باشد.

 


 

15-

نتیجه:  این تساوی درست است و اتجاد مزدوج را نشان می دهد.

 


 

16-

نتیجه:  این عبارت درست است و نشان می دهد اگر جمع دو عدد مثبت مساوی صفر باشد، حتما هر دوی آن ها صفر هستند.

 


 

17-

نتیجه:  این تساوی نادرست می باشد.

عبارت درست به صورت زیر می باشد:

 


 

18-

نتیجه:  این عبارت نادرست می باشد.

مثال: اگر 5-=x ، آنگاه :

 


 

19-

نتیجه:  این عبارت نادرست می باشد.

مثال: اگر 3=x باشد ، آنگاه

 


 

20-

نتیجه:  این عبارت درست می باشد و نشان می دهد اگر دو طرف یک نامساوی را در یک عدد مثبت ضرب کنیم جهت نامساوی عوض نمی شود.

 


 

21-

نتیجه: این عبارت نادرست می باشد و نشان می دهد اگر دو طرف نامساوی را در یک عدد منفی ضرب کنیم جهت نامساوی عوض می شود.

مثال: (5)(2-) > (3)(2-) <= 2-=a و 5>3

                10-   >  6-  <=

و این یک عبارت نادرست است. ( می دانیم  10- <  6- )

 


 

مثال 1:

با توجه به تساوی های زیر ثابت می کنیم 1=2 می باشد. اشکال کار در کجاست؟

a=b

فرض کنیم a و b دو عدد مساوی باشند.       

 
a+a=b+a به دو طرف تساوی بالا مقدار a را اضافه کنید.  
2a=b+a حاصل را بدست آورید.  
2a-۲b=b+a-۲b از دو طرف تساوی بالا 2b را کم کنید.  
2a-۲b=a-b حاصل را بدست آورید.  
از دو فاکتور بگیرید.  
دو طرف تساوی را بر a-b تقسیم کنید.  

 1=2

حاصل را بدست آورید، خواهیم داشت:  

 

 حل: اشکال کار در قسمت تقسیم می باشد. چون a=b پس a-b=0 و مخرج کسر برابر صفر است. و تقسیم بر صفر مبهم و نا مشخص است.

به طور کلی: برای انجام عمل تقسیم مخرج کسر باید مخالف صفر باشد.

 مثال2:

با توجه به تساوی های زیر ثابت می کنیم 1-=1 می باشد.. اشکال کار در کجاست؟

a=-b

فرض می کنیم a و b دو عدد قرینه هم هستند.

 
a-a=-b-a از دو طرف تساوی عدد a را کم کنید.  
a+b=-b-a در سمت چپ بجای (a-) عدد b را قرار دهید.  
a+b=-(a+b) در سمت راست از علامت منفی فاکتور بگیرید.  
دو طرف تساوی را بر a+b تقسیم کنید.  

1-=1

حاصل را بدست آورید. خواهیم داشت:  

 

حل: اشکال کار در عمل تقسیم می باشد. می دانیم برای انجام عمل تقسیم مخرج کسر باید مخالف صفر باشد. اما چون a و b قرینه هم هستند، پس a+b برابر صفر است و تقسیم بر صفر مبهم و نامشخص است.

 




:: مرتبط با: جزوات ریاضی سال سوم راهنمایی ,
بردار
 
 
تاریخ :  جمعه 16 اردیبهشت 1390
نویسنده :  سید ایمان امینی

.:: بردار ::.

 

مختصات:

برای مشخص کردن نقاط صفحه می توانیم دو محور عمود بر هم با مبدأ مشترک در صفحه رسم کنیم. این دو محور را دستگاه مختصات می نامیم.

ویژگی های صفحه مختصات:

 صفحه مختصات دارای ویژگیهای زیادی است. برای آشنایی شما با ویژگیهای زیبای این صفحه به روش زیر عمل می کنیم:

تصویری برای شما به نمایش در می آید، با دقت به عملیات انجام شده روی تصویر و تجزیه و تحلیل آن،       نتیجه گیری خود را بیان کنید. سپس روی قسمت (نتیجه گیری) کلیک کنید، و نتایج خود را با نتیجه نوشته شده مقایسه کنید. از آن جا که شما در نتیجه گیری ها به ما کمک می کنید. لذا، امیدواریم این امر باعث تثبیت یادگیری و گسترش مهارتهای شما باشد.

 

نتیجه گیری:

í هر نقطه واقع در ناحیه اول طول و عرضش مثبت است.

 


 

نتیجه گیری:

í هر نقطه واقع در ناحیه دوم طولش منفی و عرضش مثبت است.

 


 

نتیجه گیری:

í هر نقطه واقع در ناحیه سوم طول و عرضش منفی است.

 


 

نتیجه گیری:

í هر نقطه واقع در ناحیه چهارم طولش مثبت و عرضش منفی است.

 


 

نتیجه گیری:

í قرینه نقطه نسبت به محور طول نقطه است.

í قرینه نقطه نسبت به محور عرض نقطه است.

í قرینه نقطه نسبت به مبدأ مختصات نقطه است.

 


 

راهنمایی برای دانش آموزان: خط d1 نیمساز ناحیه اول و سوم و خط d2 نیمساز ناحیه دوم و چهارم می باشند.

نتیجه گیری:

í قرینه نقطه نسبت به نیمساز ناحیه اول و سوم نقطه است.

í قرینه نقطه نسبت به نیمساز ناحیه دوم و چهارم نقطه است.

 

بردار: (Vector)

بردار پاره خطی است جهت دار که دارای ابتدا و انتها باشد؛

مانند بردار که ابتدایش A و انتهایش B  می باشد. گاهی اوقات نیز بردار را با یک حرف نشان می دهند؛ مانند بردار

هر بردار در صفحه دارای مختصات می باشد. برای مشخص کردن مختصات یک بردار ابتدا آن را به دو بردار یکی در امتداد افق (محور طول) و دیگری در امتداد قائم (محور عرض) تجزیه کرده و با توجه به جهت بردار ها مختصات آنرا می نویسیم.

بردارها دارای ویژگیهای زیادی هستند و در ریاضی و فیزیک کاربرد فراوان دارند. برای آشنایی با برخی از ویژگیهای بردارها تصاویر را نگاه کنید و نتیجه گیری های خود را با نتایج ثبت شده مقایسه کنید.

 


 

نتیجه گیری:

í هر برداری که موازی محور طول ها باشد ، عرض آن صفر است و هر برداری که عرض آن صفر باشد ، موازی محور طول هاست.

 


 

نتیجه گیری:

í هر برداری که موازی محور عرض ها باشد، طول آن صفر است و هر برداری که طول آن صفر باشد، موازی محور عرض هاست.

 


 

نتیجه گیری:

í بردارهای رسم شده با بردار برابرند.

í بردارهای موازی ، هم اندازه و هم جهت را بردارهای مساوی گویند.

í مختصات همه بردارها برابر  می باشد.

 


 

نتیجه گیری:

 í بردارهای رسم شده دو به دو با هم قرینه اند.

 


 

í راهنمایی: در شکل (1) رابطه بین بردار  با سایر بردار ها و در شکل (2) رابطه بین بردار با سایر بردارها را بیابید.

نتیجه گیری:

í در شکل (1) چون می توان گفت: بردار بردار حاصل جمع دو بردار است.

í در شکل (2) چون می توان گفت: بردار بردار حاصل جمع بردارهای می باشد.

í هر گاه دو یا چند بردار دنبال هم باشند، برای یافتن حاصل جمع این بردارها کافی است ابتدای بردار اول را به انتهای بردار آخر وصل کنیم. این روش برای نشان دادن بردار حاصل جمع «روش مثلث» نام دارد.

 


 

نتیجه گیری:

í برای بدست آوردن حاصل جمع دو بردار با ابتدای مشترک، می توانیم قطر متوازی الاضلاعی را که دو بردار روی آن رسم می شود ، به دست آوریم : این قاعده روش متوازی الاضلاع نامیده می شود.

 


 

نتیجه گیری:

í این شکل ضرب یک عدد در بردار را نشان می دهد.

با توجه به مختصات بردارها می توان نتیجه گرفت که :

 


 

نتیجه گیری:

í این تصویر ضریب یک عدد منفی در بردار را نشان می دهد.

با توجه به مختصات دو بردار می توان نوشت:

به عبارت دیگر:

 

بردارهای واحد مختصات:

بردارهای  و را بردارهای واحد مختصات می نامیم.

معمولا پارچه فروش ها برای اندازه گیری پارچه از یک متر فلزی کوچک  استفاده میکنند. این متر فلزی به عنوان واحد اندازه گیری پارچه  کار آن ها را ساده تر می کند. در صفحه مختصات بردار i بردار واحد محور طول ها و بردار j بردار واحد محور عرض ها می باشد که هر برداری از صفحه را می توانیم بر حسب این بردار های واحد بدست آوریم.

مثال:

 

 

 

 

 

1. اگر باشند، دو بردار مساویند در صورتیکه .

مثال: مقادیر n , m را چنان بیابید که دو بردار برابر باشند.

حل:

 

2. اگر باشند، دو بردار بر هم عمودند در صورتیکه xx´+yy´ =0

مثال: مقدار m را چنان بیابید که دو بردار در مبدأ مختصات بر هم عمود باشند.

حل:

 

3. اگر دو نقطه در صفحه باشند، مختصات نقطه c وسط پاره خط AB عبارت است از:

مثال: اگر دو نقطه در صفحه باشند و نقطه وسط پاره خط AB قرار داشته باشد، مقدار a کدام است؟

حل:

 

4. بردار برداری است که از انتهای به انتهای رسم شود.

 

5. حاصل جمع هر بردار با قرینه اش برابر صفر است.

مثال: بردارهای قرینه یکدیگر هستند.

مقادیر n , m را بدست آورید.

حل:

 

6. اگر o محل تلاقی قطرهای متوازی الاضلاع ABCD باشد، آنگاه:

 

7. اگر AM میانه نظیر ضلع BC از مثلث ABC باشد، آنگاه:

 

8. اگر N , M وسطهای اضلاع AC , AB از مثلث ABC باشند، آنگاه:

 

9. در متوازی الاضلاع ABCD داریم:

 

10. اگر عدد m ، عددی بین 1- و 1 باشد، آنگاه اندازه بردار از اندازه بردار کوچکتر است.

 




:: مرتبط با: جزوات ریاضی سال سوم راهنمایی ,
تاریخ :  جمعه 16 اردیبهشت 1390
نویسنده :  سید ایمان امینی

.:: مجموعه اعداد صحیح و گویا ::.

 

الف: مجموعه عددهای صحیح

عدد صحیح:(integer)

صحیح به معنی تندرست، سالم و درست می باشد و هر یک از اعداد 0 , 1± , 2± , ... را یک عدد صحیح       می نامیم. مجموعه ی اعداد صحیح را با حرف  که از کلمه آلمانی Zahlen به معنی «عدد صحیح» گرفته شده است، نمایش می دهند. این مجموعه عبارت است از:

{ ... , 3+ , 2+ , 1+ , 0 , 1- , 2- , 3- , ...} = 

 

نمایش مجموعه عددهای صحیح:

برای معرفی یک مجموعه روشهای مختلفی وجود دارد. اگر اعضای مجموعه مشخص باشند، اعضای مجموعه را می نویسیم مانند: مجموعه کتابهای درسی سال سوم دوره راهنمایی تحصیلی گاهی اوقات لازم است به جای نوشتن اعضای یک مجموعه ، خاصیت اعضاء آن را بیان کنیم. به عنوان مثال فرض کنید معاون پرورشی یک مدرسه خطاب به دانش آموزان آن مدرسه می گوید:

دانش آموزانی که در نوبت اول معدل آن ها بیشتر از 18 باشد ، به اردوی علمی ، تفریحی در شهر اصفهان خواهند رفت. در این جا اعضای مجموعه فعلا مشخص نیستند ، بلکه ویژگی و خاصیت اعضای مجموعه که معدل بالای 18 می باشد در آینده ای نزدیک اعضای مجموعه رامشخص خواهد کرد.

اکنون مجموعه اعداد صحیح بین 3+ و 3- را در نظر بگیرید و به معرفی این مجموعه در حالتهای مختلف توجه کنید:

الف) نمایش مجموعه اعداد صحیح بین 3+ و 3- روی محور اعداد صحیح:


ب) نمایش مجموعه اعداد صحیح بین 3+ و 3- به زبان ریاضی:


ج) نمایش مجموعه اعداد صحیح بین 3+ و 3- با نوشتن اعضای آن مجموعه:

{ 2 , 1 , 0 , 1- , 2- }=A

مثال: مجموعه های زیر با علائم ریاضی بیان شده اند. آن ها را با اعضاء مشخص کنید:

الف):


 

حل:  مجموعه A بیان می کند : « x بطوریکه x به اعداد صحیح تعلق دارد و مربع آن برابر عدد یک است.» . پس از خواندن این جمله باید اعدادی را که واجد این خاصیت هستند، پیدا کنیم. بدیهی است که عددهای صحیح 1+ و 1- این خاصیت را دارند بنابراین :

{ 1- و 1+} =A

 

 

ب):


 

حل: گاهی اوقات به جای به کاربردن متغیر ، عبارتی جبری شامل متغیر بکار می رود.

(2x) نماینده اعضای این مجموعه است که بیان می کند x  به اعداد طبیعی تعلق دارد. بنابراین:

{ ... و 16 و 8 و 4 و 2}=B

 

جمع عددهای صحیح:

الف) جمع با توجه به بردار

ب) جمع بدون توجه به بردار: برای نوشتن حاصل جمعه به صورت زیر عمل می کنیم:

1. ابتدا تا حد امکان مختصر نویسی می کنیم.

2. اگر عددها هم علمت باشند، جمع می کنیم و اگر مختلف العلامت باشند، کم می کنیم.

3. علامت جواب بدست آمده را مشخص می کنیم.

مثال: 7=5-12=(5-)+(12+)

 

یادآوری: چنانچه بخواهیم از قرینه یابی استفاده کنیم به صورت زیر عمل می کنیم:

11-=(4+7)-=(4-)+(7-)

5-=(10-15)-=(10+)+(15-)

4-=(8-12)-=(12-)+(8+)

 

تفریق عددهای صحیح:

الف) تفریق با استفاده از بردار:

مثال:  تفریق متناظر با بردار  را بنویسید.

 


 

حل: (عدد ابتدای بردار) = ( طول بردار) - ( عدد انتهای بردار)

                           ( 3- ) = ( 4+ ) - ( 1+ )

 

ب) تفریق اعداد صحیح بدون توجه به بردار:

 برای تفریق کردن عدد b از عدد a ، می توانیم قرینه b را با a جمع کنیم: یعنی:

a-b = a+(-b)

مثال:

22=7+15=(7+)+(15+)=(7-)-(15+)

 


 

ب: مجموعه عددهای گویا

عدد گویا: (rational Number):

گویا صفت فاعلی از مصدر گفتن می باشد و در ریاضی هر عدد کسری مانند  یا هر عددی که بتوان آن را به شکل یک کسر نوشت مانند 2- , 0 , 3+ , 2/3- , 25/0 که به ترتیب به شکل کسرهای  نوشته می شوند ، را یک عدد گویا می نامیم.

 

مجموعه عددهای گویا:

 این مجموعه شامل تمام اعداد گویا است، این مجموعه را با حرف Q که حرف اول کلمه Quotient  است، نمایش می دهند.

نمایش مجموعه عددهای گویا به زبان ریاضی به صورت زیر است:


 

نماد اعشاری اعداد گویا:

برای مشخص کردن نماد اعشاری اعداد گویا کافی است صورت را بر مخرج کسر تقسیم کنیم. با این تقسیم امکان ایجاد دو نوع عدد اعشاری در خارج قسمت وجود دارد:

1) عدد اعشاری مختوم

2) عدد اعشاری متناوب

 

مثال:


 

1- عدد اعشاری مختوم:

اگر در هنگام تقسیم صورت بر مخرج به باقیمانده صفر برسیم، عدد اعشاری ایجاد شده مختوم است. عدد اعشاری مختوم به صورت دهم ، صدم ، هزارم و ... بیان می شوند و خیلی ساده می توان آن ها را به صورت کسر تبدیل کرد مانند:


 

2- عدد اعشاری متناوب:

اگر در تقسیم صورت بر مخرج کسری به باقی مانده صفر نرسیم و مرتبا عددی در خارج قسمت تکرار شود، این عدد ، عدد اعشاری متناوب نام دارد.

اعداد اعشاری متناوب به صورت  نوشته می شوند و بدین معنی است که رقم های زیر خط تیره در اعشار تکرار می شوند. ماند:


نکته1: اگر ارقام تکراری بلافاصله پس از ممیز شروع شوند، عدد اعشاری متناوب ساده است و برای تبدیل آن به صورت کسر از فرمول زیر می توان استفاده کرد:


 

مثال:


 

نکته 2: اگر ارقام تکراری بلافاصله پس از ممیز شروع نشوند، عدد اعشاری متناوب مرکب است وبرای تبدیل آن به صورت کسر از فرمول زیر می توان استفاده کرد:


مثال:


نتیجه:  اگر اعداد اعشاری مختوم یا متناوب باشند، قابل تبدیل به کسر هستند.

اعدادی مانند  که در هنگام جذر گرفتن به باقیمانده صفر نمی رسند و جواب بدست آمده نه مختوم می شود و نه متناوب ، قابل تبدیل شدن به کسر نیستند و این بدان معنی است که گویا نمی باشند و غیر از اعداد گویا اعداد دیگری هم وجود دارد.

 

محور اعداد گویا:

عدد  را بر روی محور مشخص کنید.

حل: برای این کار کافی است فاصله بین 3- تا 4- را به 5 قسمت مساوی تقسیم کنیم و 3 تا از آن را انتخاب کنیم.


 

تساوی کسرها و کسر علامت دار:

عدد  را روی محور نشان داده و با هم مقایسه کنید.


چنانچه مشاهده می کنید دو عدد   برابرند. یعنی بر روی محور این اعداد یک نقطه را مشخص می سازند. می دانیم  به صورت زیر بدست آمده است:

(صورت و مخرج  در عدد 2 ضرب شده است)        

بنابراین می توان گفت: اگر صورت و مخرج کسر  را در عدد غیرصفر n ضرب کنیم، کسر   بدست می آید که با کسر اولیه برابر است.

 

گویا کردن یک کسر:

هر گاه مخرج یک کسر ، رادیکال داشته باشد، چنانچه عملی انجام دهیم تا رادیکال مخرج حذف شود، این عمل را گویا کردن کسر گویند.

1. اگر کسر به صورت  باشد. (0<b) برای گویا کردن کسر، صورت و مخرج کسر را در  ضرب می کنیم.

 

مثال: 

 

2. اگر کسر به صورت  باشد ، (0<a,b) صورت و مخرج را در  ضرب می کنیم.


 

مثال:



1. قاعده دور در دور و نزدیک در نزدیک در تقسیم به صورت مقابل می باشد.  

2. حاصل ضرب هر عدد در وارون آن عدد مساوی یک می باشد.

مثال: اگر A و  وارون یکدیگر باشند، مقدار A چقدر است؟


 

3. هر گاه  اعداد گویا باشند،  بین آن دو قرار دارد.

مثال: بین دو کسر  ، پنج کسر دیگر بنویسید.


با توجه به این نکته می توان نوشت:  و به همین ترتیب 5 کسر در بین این دو عدد مشخص می شود.


á بین دو عدد گویا چند عدد وجود دارد؟

 

4. عدد گویای  را تحویل ناپذیر گویند هر گاه ب.م.م a و b مساوی یک باشد.

مثال: .  اگر کسر  قابل ساده شدن باشد، عدد گویای  را تحویل پذیر می نامند ؛ مانند   .

 

5. اگر در تجزیه مخرج یک عدد گویای تحویل ناپذیر (ساده نشدنی) فقط عامل های 2 و 5 باشد ، آن کسر به عدد اعشاری مختوم تبدیل می شود.

مثال:


 

6. اگر در تجزیه مخرج یک عدد گویای تحویل ناپذیر (ساده نشدنی) عامل های 2 و 5 وجود نداشته باشد، آن کسر به عدد اعشاری متناوب ساده تبدیل می شود.

مثال:


 

7. اگر در تجزیه مخرج یک عدد گویای تحویل ناپذیر (ساده نشدنی) ، علاوه بر عامل های 2 و 5 عاملهای اول دیگری نیز مانند 3 ، 7 ، 11 ، ... وجود داشته باشد، آن کسر به عدد اعشاری متناوب مرکب تبدیل می شود.

مثال:




bebakhshid khanooom daei zade man nemidooonam chera tasavir baz nemishavand sharmande.

agar kary dashtin mitavanid ba man ta saat 11 zang bezanid




:: مرتبط با: جزوات ریاضی سال سوم راهنمایی ,
 

 


این وبلاگ توسط جمعی از دوستان طراحی و بازسازی شده و امیدواریم بتوانیم بخشی از نیاز های شما را تامین کنیم.
با تشکر.

  :: مدیر وب سایت : سید ایمان امینی
دوست دارید مطالب وبلاگ مربوط به چه مبحثی باشد؟







» تعداد مطالب :
» تعداد نویسندگان :
» آخرین بروز رسانی :
» بازدید امروز :
» بازدید دیروز :
» بازدید این ماه :
» بازدید ماه قبل :
» بازدید کل :
» آخرین بازدید :